SIU Office of Technology Transfer Available Technology

Application

 Protective coating of aircraft brakes

Inventor

Don Jarlen, PhD
Dr. Jarlen is an emeritus
professor of mechanical
engineering and engineering
processes at Southern Illinois
University Carbondale.

Contact

Kristy Owen
Assistant Director
kowen@siumed.edu
(217) 545-6397

Glass Ceramics-Based Antioxidants for the Oxidation Protection of Carbon-Carbon Composites

Carbon-carbon (C/C) composite brakes are one-third the weight of typical steel brakes and attain their strength and frictional properties at temperatures up to 1600° C. C/C brakes can endure high temperatures, but in the presence of oxygen they will begin to oxidize at 400° C such that anti-oxidant systems must be applied to the non-rubbing C/C composite surfaces. Currently, commercial coating materials made of crystalline metal phosphates that are derived from heat treating phosphoric acid-based liquid precursors and are painted on the surface of carbon-carbon composites. The coatings tend to be porous, discontinuous and sensitive to moisture causing decreased surface friction.

Invention

An SIU researcher has developed a series of methodologies to produce glass-ceramic coating materials for the oxidation protection of C-C composite brakes. The glass-ceramic coating systems are derived from uniquely formulated liquid precursors which, after heat treating, produce dense coatings comprising crystalline ceramic particles that are bonded by a continuous matrix phase of glass. Upon heating, the chemicals turn into an oxide mixture and form a glass-ceramic coating material that penetrates into the carbon-carbon composite to be protected. The base oxides of the glass-ceramic coating and their source raw materials covered in this invention are listed in Table 1.

	TABLE 1
	Base oxides and raw chemicals for the
	oxides used in the anti-oxidants.
Base Oxides	Source Raw Materials
P ₂ O ₅	85% H ₃ PO ₄ , Al(H ₂ PO ₄) _{3,} KH ₂ PO ₄ , NaH ₂ PO ₄ ,
B_2O_3	B_2O_3 , $K_2B_4O_7*10(H_2O)$, $Na_2B_4O_7*4(H_2O)$,
Al_2O_3	AI(H2PO4)3, $AI2O3,$
K ₂ O	K_2CO_3 , KNO_3 , KCI , KOH , KH_2PO_4 ,
Na ₂ O	NaCO ₃ , NaNO ₃ , NaCl, NaOH, NaH ₂ PO ₄ ,
CaO	CaCO ₃ , CaCl ₂
MgO	MgCO₃, MgCl ₂

Key Advantages

- Coating bonds well to and protects C-C composite brakes
- Coating can be produced from a variety of raw materials

Status

U.S. patent #9,388,087 was issued on July 12, 2016. The technology is available for license.

Other opportunities related to this technology, included but not limited to sponsored and/or collaborative research, may be available. Please reach out to the designated contact identified at left for more information.